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A self-consistent nonlinear model of an isotope separation process based on se-
lective ion cyclotron resonance heating in a magnetized plasma is presented, and
its numerical resolution is described. The response of the electrons to the electro-
magnetic field is modeled by a cold and linear conductivity tensor, while a particle
method is used to solve nonlinear Vlasov equations for the ions. The resolution of
the time-harmonic Maxwell equations is achieved by a finite-element method. Both
steps are coupled by an iterative procedure, which shows fast convergence. Results
are presented for the case of a solenoidal launching antenna.c© 2001 Academic Press
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1. INTRODUCTION

The ion cyclotron resonance (ICR) phenomena allows to give energy to species in a
magnetized plasma. Such effects have been commonly used for a long time, for example in
fusion devices [1] as well as in isotope separation [2, 3]. In this last case, one chosen species
has to be heated selectively by the electric field created by an inductive antenna. A schematic
description of a device used for isotope separation is given by Fig. 1. A strongly magnetized
plasma is first created in the source zone by collisions of the atoms of a metallic vapor and
electrons heated at the electron cyclotron frequency. Ions and electrons leave the source
and enter the zone we want to modelize in this paper, where ions are heated selectively
by cyclotron resonance. Then, sufficiently heated ions, which have large Larmor radii, hit
the enriched plates in the collection zone, while nonresonating ions hit the terminal waste
plate. The efficiency of this process requires that ion–ion collisions are rare, so that selective
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FIG. 1. Schematic view of an isotope separation device.

heating is not spoiled by collisional transfer of energy between resonant and nonresonant
species. Therefore, collisions are usually neglected in the modelization. More complete
descriptions of such devices can be found in [2, 3].

The simulation of ICR heating remains a difficult problem as the nonlinear Maxwell–
Vlasov system of equations has to be solved for this magnetized noncollisional plasma.
As the unsteady phase is usually of reduced interest for isotope separation devices, time-
periodic solutions of these equations are generally considered.

Following the ideas of McVey [4], a semi-analytical derivation was developed by Compant
La Fontaine and Pashkovsky [5]. They resolved the Maxwell equations in the time-harmonic
representation and in cylindrical coordinates (r, θ, z), wherez is the axis of the confining
magnetic field. The solutions for the electromagnetic (EM) field (E, B) are found in terms
of Fourier series, both in the azimuthal moden and in the axial wavenumberk‖. The current
density generated by the plasma species is set equal toσ (ω, n, k‖) E(ω, n, k‖), whereω is
the frequency of the exciting current density carried by the launching antenna, and where
σ is a conductivity tensor obtained by the integration over velocities of the solutions of
the Laplace–Fourier transformed Vlasov equations, linearized around spatially infinite and
homogeneous time-averaged zeroth-order distribution functions. Its expression, calculated
for a homogeneous magnetic fieldB0 is given for example by Ginzburg and Ruhadze [6].
Moreover, a greatly simplified formulation of this tensor is used in [5] by settingk⊥ρL¿ 1,
wherek⊥ is the transverse wavenumber andρL the mean transverse Larmor radius of the
species.

This method has the major defect of being linear in the field amplitude, neglecting the
quasilinear retroaction of the wave on the ion zeroth-order distribution functions. It is also
inconsistent with the plasma flow: In actual experiments, the temperature of the heated
species may vary from around 5 eV at the entrance to about 500 eV at the end of the
device, which contradicts the assumed axial homogeneity. Thus, it can be applied mainly to
heating in the linear range, mostly for minor species. Moreover, finite axial length effects
are ignored, though it can be shown [7, 8] that this may have consequences on the Landau
and cyclotron damping rates as compared to those of an infinite plasma. Furthermore, this
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method needs a Fourier transform of the exciting current density, which often leads to quite
tedious computations as usually the antenna shape is complicated (helicoidal filaments with
terminal rings and current leads). Details about this method, as well as comparisons with
the experiments can be found in [4, 5, 9].

Because of these restrictive hypotheses, it was decided to develop a self-consistent nu-
merical solution of the Maxwell–Vlasov system in configuration space rather than in the
Fourier space, assuming that a time-periodic regime has been reached. A quasilinear model
is derived, which retains only the coupling introduced by the harmonics−1, 0, and 1
of the fields and of the ion distribution functions, while the contribution of the electrons
is assumed to be cold and linear. Moreover, neutrality of the time-averaged quantities is
assumed.

In order to solve the coupled system of equations, we developed an iterative fixed-point
method. In the first step, the Maxwell equations are solved in time-harmonic form by a
finite element method with sources computed at the previous iteration. Then, the Vlasov
equations for the ions are solved by a particle method with the newly computed EM wave
field. The procedure is iterated until a fixed point is reached. Fast convergence is obtained
by approximately impliciting the ionic current with the help of an equivalent, linear, and
local conductivity tensor.

This paper is organized as follows. In Section 2, we first derive and justify the physical
model we use, and give the corresponding governing equations. Then, in Section 3, the
iterative method employed to find a solution of the model is detailed, and the underlying
numerical methods are described. In Section 4, we present and discuss results obtained by our
method, including resonance curves, field, and mean Larmor radius radial and longitudinal
profiles for a solenoidal launching antenna. In Section 5, conclusions are drawn and the
results are summarized.

2. MODELIZATION

2.1. General Assumptions

As mentioned earlier, we intend to solve the Maxwell–Vlasov system

∂ fα
∂t
+ V · ∇X fα + qα

mα

(E+ V × B) · ∇V fα = 0, (1)

J(X, t) = ∑
α∈ε

qα

∫
R3

fα(X,V, t)Vd3V, (2)

1

c2

∂E
∂t
−∇ × B = −µ0(J+ Jext), (3)

∂B
∂t
+∇ × E = 0 (4)

in a time-periodic representation and inside a bounded domain which represents the heating
region. This domain is supposed to be a cylinder whose end sections are located inz= 0
andz= L. The confining magnetic field is directed along thez axis, and we shall denote
by (ex, ey, ez) the orthonormal basis ofR3.

In these equations, the subscriptα refers to any element (electrons or ions) in the setε

of the plasma species, andqα, mα, and fα are the charge, mass, and particle distribution
function, respectively, of the speciesα whose cyclotron frequency is given byωcα = qα |B0|

mα
.
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Because the currentJext carried by the inductive antenna is purely harmonic,

Jext(t) = Jext,1eiωt + J̄ext,1e−iωt , (5)

the solution is searched under the form

A(t) = A0+ A1eiωt + Ā1e−iωt , (6)

whereA denotes eitherE, B or fα. This means that only the harmonics−1, 0, and 1 (i.e., the
time-independent solution and the fundamental harmonics) are taken into account. Indeed,
in ICR isotope separation experiments, the EM force created by the fieldsE1, B1 acting
on the particles is small as compared to that created by the stationary fieldB0. In other
words,|B1| ∼ λ|B0| and|E1| ∼ λ|Vc||B0|, whereλ is much smaller than 1, and whereVc

is a characteristic velocity of the plasma species, the thermal velocity for example. When
developing the solution of the Vlasov equation (1) in ascending powers ofλ, it can be
shown that the total contribution of higher-order termsfα,p with |p| ≥ 2 of the distribution
function fα is of orderλ2. Consequently, because of the linearity of Eqs. (3) and (4),Ep and
Bp with |p| ≥ 2 are also of order up toλ2. This fact is well confirmed by the experimental
results, as no higher harmonics are observed.

Further, the static electric field is assumed negligible (E0 ≈ 0), because of the great axial
mobility of electrons: When positive charges are in excess in a section of the plasma,
because of ICR heating or of other plasma phenomena, then the electrons located on
the same magnetic field lines, but in other sections of the plasma, are able to neutralize
quite easily this space-charge [4]. This assumption is used in most of the works rela-
tive to ICR isotope separation [4, 5] and is also fairly well-checked in practice. More-
over, we shall consider that the highly confined plasma is lowβ, so that the value of
the externally applied magnetic fieldB0 is considered to be known and is not disturbed
by the time-averaged current densities generated by the particles. Although the method
presented here does not need any restriction on the homogeneity of the static magnetic
field, we will assume it homogeneous throughout the whole heating region for the sake of
simplicity.

2.2. Modelization of the Electrons

The response of the electrons under the action of the EM field is assumed linear because
the typical transit time of an electron crossing the heating zone with thermal velocity is of the
order of some microseconds, so that the interaction time with the wave is a very few periods
(compared to 500 to 1000 for the ions). Moreover, electron cyclotron absorption is negligible
asω ¿ ωce. Electron Landau damping has also been neglected as thez component ofE1

is usually very weak because of the high electronic axial conductivity. Finally, the mean
electron Larmor radius (ρLe ∼ 5 µm) is much smaller than the gradient scale length of the
EM field (k⊥ρLe¿ 1), and the phase velocity of the wave is usually large in front of the
electron mean axial velocity ¯we (w̄e¿ ω

k‖
).

With these assumptions, we end up with a cold electron conductivity tensor relating the
first harmonic of the electronic current densityJe,1 andE1 in the following way [10]

Je,1 = ne, 0χeE1, (7)
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wherene,0 is the time-averaged electronic density, andχe is given by

χe = q2

me

−iae be 0

−be −iae 0

0 0 −ir e

 , (8)

with the definitions

ae = 1

2
(se+ de), be = 1

2
(se− de), (9)

se = 1

ω + ωce
, de = 1

ω − ωce
, re = 1

ω
. (10)

Consistently with the hypothesis made in Section 2.1 on the nullity of the static electric
field, the plasma is assumed neutral so that

ne,0 =
∑
i∈I

ni,0, (11)

whereI denotes the set of the isotopic ion species andni,0 the time-averaged density of the
ion speciesi ∈ I.

2.3. Modelization of the Ions

As the efficiency of the isotope separation device under consideration relies mainly on
the dynamics of the different ion species, we retain the full Vlasov equation (1) for these
species, where the fieldsE and B are now under the form (6). The only restriction we
make is that the solution of (1) is supposed to be time-periodic. The existence of such a
solution was proved by Bostan and Poupaud [11] and by Omnes [12]. Note that, on the
other hand, the existence of a periodic solution to the whole Vlasov–Maxwell system in
a three-dimensional bounded domain has not been proved yet. We shall also suppose that
the incoming ion distribution functions are known and time-independent on the injection
boundary located inz= 0 and that no particle is reflected from the end boundary of the
device located inz= L

fα(X,V, t) = fα,B(X,V) for z= 0 andVz > 0, (12)

fα(X,V, t) = 0 for z= L andVz < 0, (13)

where fα,B(X, V) is a given, not necessarily Maxwellian, distribution function. In particular,
theX-dependence offα,B allows to model radially nonhomogeneous plasmas.

2.4. Summary of the Model

Using the previous considerations, the full system to be solved is: For givenJext,1 and
distribution functionsfα,B of the ions on the boundaries, findfα, 2π

ω
periodic withα ∈ I

andE1, B1 such that

∂ fα
∂t
+ V · ∇X fα + qα

mα

[(E1eiωt + E1e−iωt +V × (B0+ B1eiωt + B1e−iωt )] · ∇V fα = 0,

(14)
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∇ × ∇ × E1−
(
ω2

c2
I3− µ0iωne,0χe

)
E1 = −µ0iω(Jext,1+ Ji,1), (15)

iωB1 = −∇ × E1, (16)

whereI3 is the identity matrix of(R3)2, Ji,1 is the fundamental harmonic of the ion current
density,

Ji,1 =
∑
α∈I

qα

∫
R3

V d3V
ω

2π

∫ 2π
ω

0
e−iωt fα(t) dt, (17)

and where, according to Eq. (11),ne,0 is set equal to

ne,0 =
∑
α∈I

∫
R3

d3V
ω

2π

∫ 2π
ω

0
fα(t) dt. (18)

Boundary conditions for the EM fields will be discussed later on.
Note that we have combined Eqs. (3) and (4) to get Eq. (15), which is more convenient

for the numerical approximation considered in Section 3.2. Moreover, Eq. (14) allows for
a quasilinear description of the behavior of the ions, which self-consistently models the
heating of these species

iω fα,1+ V · ∇X fα,1+ qα
mα

(V × B0) · ∇V fα,1 = − qα
mα

(E1+ V × B1) · ∇V fα,0, (19)

V · ∇X fα,0+ qα
mα

(V × B0) · ∇V fα,0 = −2
qα
mα

<e[(E1+ V × B1) · ∇V f̄ α,1]. (20)

3. NUMERICAL SOLUTION OF THE MODEL

As is well-known in plasma physics, the dielectric conductivity tensor (i.e., the relation
linking Ji,1, given by Eq. (17), to the fieldE1) is essentially nonlocal, and the discretization of
a wave equation with such a tensor would then lead to a full mass-matrix, which is prohibitive
both in computational time and memory storage requirements. This is the reason why, as
outlined by Van Eester [13], the numerical methods usually developed until now consider
mainly nonlocality in only one space dimension, normally to the static magnetic fieldB0.
The idea proposed in the present article is to compute an “equivalent” conductivity tensor
(to be defined in the next subsection), linear and local, and to use a fixed-point iterative
method to get the solution of system (14) to (18).

3.1. Description of the Numerical Method

We first describe the iterative method used to compute a solution of the proposed model.
Knowing the values of the fields and of the distribution functionsEk

1, Bk
1 and f k

α with α ∈ I
after thekth iteration, the steps for the(k+ 1)th iteration are the following

• First, computeJk
i,1(X) andnk

e,0(X) respectively by formula (17) and (18).
• In each point of the domain, compute an “equivalent,” linear and local ionic conduc-

tivity tensorσ k+1
i (X), usingJk

i,1(X) andEk
1(X) according to the relation

Jk
i,1(X) = σ k+1

i (X) Ek
1(X). (21)
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Here, we must point out that there is a large choice of such tensors, because there are nine
coefficients in the 3× 3 matrix σ k+1

i (X) and only three equations in formula (21). The
fact that theσxz, σyz, σzx, andσzy elements of the conductivity tensor are dominated by the
remaining coefficients when the plasma is not too hot, leads us to choose the particular form

σ k+1
i =

−iak+1 bk+1 0

−bk+1 −iak+1 0

0 0 −ir k+1

 , (22)

where the three unknownsak+1, bk+1, andr k+1 are now fully determined by formula (21).
• Calculate the electronic conductivity tensor

σ k+1
e (X) = nk

e,0(X)χe. (23)

• Solve the wave equation with the new tensors

∇ × ∇ × Ek+1
1 −

(
ω2

c2
I3− µ0iω

(
σ k+1

e + σ k+1
i

))
Ek+1

1 = −µ0iωJext, (24)

At this level, it must be noticed thatσ k+1
i Ek+1

1 represents an implicit prediction ofJk+1
1,i and

σ k+1
e a prediction of the converged value ofne,0(X)χe.

• Solve Eq. (16) forBk+1
1 .

• Solve Eq. (14) forf k+1
α with the newly computed fields (Ek+1

1 ,Bk+1
1 ).

If this procedure converges to a limit, then it is easy to check that this limit is a solution of
the initial system (14) to (18). Moreover, if there is a unique solution to this system (which
remains an open question), then the choice of the form ofσi in Eq. (21) does not influence
the final result, but only the speed of convergence. If this tensor is badly chosen, there might
even be no convergence at all. Although no theoretical tool has been developed to optimize
the choice of such a tensor and to study under which conditions this procedure converges, it
seems very natural to use a tensor that is as close as possible to the “true” physical relation
linking Ji,1 to the fieldE1. For the kind of devices we are concerned with, in which the
plasma is not very hot (see the parameters given in Section 4.1), an efficient choice for
achieving convergence is thus given by the particular form Eq. (22), as can be seen from
the convergence criteria defined by Eqs. (88) and (89) and plotted on Figs. 2 and 3.

FIG. 2. Value of the convergence criteria Dpk (a) and Dk (b) as a function of the iteration number k for
ω = 0.95ωc1.
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FIG. 3. Value of the convergence criteria Dpk (a) and Dk (b) as a function of the iteration number k for
ω = ωc1.

The proposed numerical method relies on two main steps: The resolution of the wave
equation (24) with given conductivity tensors, and the resolution of the Vlasov equation
(14) with given fields. These two points are the items of the next two subsections.

3.2. Solution of the Maxwell Equations

The resolution of the first step of the iterative method, i.e., the solution of the Maxwell
harmonic equation (24), is performed by a finite element method usingP1 tetrahedral el-
ements. They were chosen rather than edge elements [14] because the particle pushing
method described in Section 3.3 requires the continuity of the EM fields. For a complete
review of the respective advantages of both finite element methods, we refer to [15]. Numer-
ical experiments show thatP1 elements are appropriate in our case, as there is no singularity
in the geometry of the computational domain and no discontinuity in the dielectric tensor
coefficients.

3.2.1. Variational Formulation. In the continuous case, Gauss’ law

∇ · (εE1) = iωµ0∇ · Jext,1 with ε = ω2

c2
I3− µ0iω

(
σ k+1

e + σ k+1
i

)
(25)

is a direct consequence of Eq. (24), but it has been shown by Jianget al. [16] that neglecting
(25) in the computations may lead to the appearance of so-called spurious modes, and that a
possible cure to this problem in the context of a nodal finite element solution is to penalize
(25) by including it in the variational formulation derived from Eq. (24) which reads:

FindE1, such that for allF∫
Ä

(∇ × E1) · (∇ × F̄) dÄ−
∫
0

((∇ × E1)× ν) · F̄ d0

−
∫
Ä

(εE1) · F̄dÄ+
∫
Ä

χ∇ · (εE1)∇ · (εF) dÄ

= −iωµ0

∫
Ä

Jext,1 · F̄ dÄ+ iωµ0

∫
Ä

χ∇ · Jext,1∇ · (εF) dÄ, (26)

whereν is the outgoing unit normal vector with respect to the boundary0 of the do-
mainÄ.
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FIG. 4. Mean Larmor radius of the39K and41K species inz= 0.45 m and inR= 0 (a), R= 2 cm (b) and
R= 5 cm (b), as a function ofω

ωc1
.

In the vacuum part of the domain, the penalization parameterχ is chosen to bec4

ω4 , so
that

χ∇ · (εE1)∇ · (εF) = ∇ · E1∇ · F in the vacuum. (27)

For nondiagonal tensors of the form (22), the choice forχ is less obvious. To be coherent
with the vacuum case, one can useχ = 1

|Det(ε)| 23
, where Det(ε) is the determinant ofε.

3.2.2. Boundary conditions.The set0 is composed of the lateral boundary of the cylin-
der (denoted by0C), on which perfectly conducting conditions (E1× ν = 0) are imposed,
and of its two ends perpendicular to the external magnetic field (commonly denoted by0A).
The injection end is a metallic diaphragm, and the terminal end is a metallic collector. Thus,
a first option is to simulate the whole device and to apply perfectly conducting conditions
on 0A. But, in order to lower the computational costs, a second option is to restrict the
domain by using artificial vertical boundaries on which absorbing boundary conditions for
the wave equation (24) are applied.

For constant scalar permittivityε and permeabilityµ, such artificial absorbing boundary
conditions are well-known [17]. They read

(∇ × E)× ν = i
ω√
εµ
((E× ν)× ν), (28)

and are exact for tangential waves whose propagation vector is normal to the boundary.
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Therefore, we look for a condition linkingE1 and (∇ × E1)× ν for plane waves satis-
fying the homogeneous Eq. (24) and which are tangential and propagating normally to the
boundary.

The following relation is obtained (see Ref. [12] for its derivation),

(∇ × E1)× ν = i ((
√
ε+E1)× ν)× ν, (29)

where the matrix
√
ε+ is the square root ofε whose eigenvalues have positive real parts. It

reads

√
ε+ =


(

kR+ kL
2

) −i
(

kR− kL
2

)
0

i
(

kR− kL
2

) (
kR+ kL

2

)
0

0 0 kP

, (30)

wherekR, kL andkP are complex numbers such that

k2
R =

ω2

c2
− ωµ0(a− b), <e(kR) ≥ 0, (31)

k2
L =

ω2

c2
− ωµ0(a+ b), <e(kL) ≥ 0, (32)

k2
P =

ω2

c2
− ωµ0r, <e(kP) ≥ 0, (33)

with the definitions

a = ne,0q2

me
ae+ ak+1, b = ne,0q2

me
be+ bk+1, r = ne,0q2

me
re+ r k+1. (34)

For symmetry reasons, and noting that for tangential fields

E1 = −(E1× ν)× ν, (35)

the insertion of (29) into the variational formulation (26) yields the problem:

FindE1, with E1× ν |0C = 0 such that for allF with F× ν |0C = 0∫
Ä

(∇ × E1) · (∇ × F̄) dÄ+ i
∫
0A

√
ε+((E1× ν)× ν) · ((F̄× ν)× ν) d0A

−
∫
Ä

(εE1) · F̄ dÄ+
∫
Ä

χ∇ · (εE1)∇ · (εF) dÄ

= −iωµ0

∫
Ä

Jext,1 · F̄ dÄ+ iωµ0

∫
Ä

χ∇ · Jext,1∇ · (εF) dÄ. (36)

3.2.3. Solution of the Discretized Problem.We first defineÄh as a suitable approxima-
tion of the domainÄ, ϒh as the set of all tetrahedra of a mesh coveringÄh, and asIh the
set of all vertices of the elements ofϒh. We denote by0Ch (resp.0Ah) the boundary of the
mesh approximating0C (resp.0A) and byϒ0Ch

h the set of all triangles which are the traces
on0Ch of tetrahedra ofϒh. Finally, I 0Ch

h denotes the set of all vertices of the elements of
ϒ
0Ch
h .
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In each nodej of I 0Ch
h , we define the outward normal vectorν j in the following way

ν j =

∑
K
0Ch
h ∈S( j )

∣∣K 0Ch
h

∣∣νK

∑
K
0Ch
h ∈S( j )

∣∣K 0Ch
h

∣∣ , (37)

where|K 0Ch
h | designates the area of the triangleK 0Ch

h , S( j ) the set of all triangles ofϒ0Ch
h

to which j belongs, andνK is the outgoing normal unit vector ofK 0Ch
h .

Then we define

Yh =
{

Fh ∈ C0(Ǟh)
3; ∀Kh ∈ ϒh, (Fh)|Kh ∈ P1(Kh)

3
}
, (38)

Y0h =
{

Fh ∈ Yh;Fh(X j )× ν j = 0, ∀ j ∈ I 0Ch
h

}
, (39)

whereX j are the coordinates of the vertexj ∈ I 0Ch
h . Moreover, we define5as the orthogonal

projection fromYh ontoY0h. The discrete problem is now:

FindEh ∈ Y0h such that for allFh ∈ Yh,∫
Äh

(∇ ×5Eh) · (∇ ×5Fh) dÄh + i
∫
0Ah

√
ε+((5Eh × ν)× ν) · ((5Fh × ν)× ν)d0Ah

−
∫
Äh

(ε5Eh) ·5Fh dÄh +
∫
Äh

χ∇ · (εEh)∇ · (ε5Fh) dÄh

= −iωµ0

∫
Äh

Jh ·5FhdÄh + iωµ0

∫
Äh

χ∇ · Jh∇ · (ε5Fh) dÄh, (40)

whereJh is a P1 approximation ofJext,1.
A basis ofYh can be constructed by associating to each vertexi ∈ Ih the vectorial function

of Yh

φi
α(X) ∈ R3, φi

α(X) = φi (X)eα, α ∈ {x; y; z}, (41)

where we recall that (ex, ey, ez) is the orthonormal basis ofR3, and whereφi (X) is the
scalar function which isP1 on each tetrahedron ofϒh, continuous onÄh, and such that

∀(i, j ) ∈ I 2
h , φi (X j ) = δi j , (42)

whereδi j is the Kronecker symbol.
EquippingYh with the scalar product associated to the quadrature formula∫

Äh

Ah · Bh dÄh ≈
∑

Kh∈ϒh

|Kh|
4

∑
j∈T(Kh)

Ah(X j ) · Bh(X j ), (43)

whereT(Kh) is the set of the four vertices of the tetrahedronKh, the projection5 has the
following expression:

5φi
α =


φi
α if i 6∈ I 0C

h ,∑
β∈{x;y;z}

ν i
αν

i
β

‖ν i ‖2φ
i
β if i ∈ I 0C

h

. (44)
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Let us write the unknown function as

Eh(X) =
∑

β∈{x;y;z}

(∑
j∈Ih

E j
βφ

j
β(X)

)
, E j

β ∈ C. (45)

Suppose further thatJh is given under the form

Jh(X) =
∑

β∈{x;y;z}

(∑
j∈Ih

J j
β φ

j
β(X)

)
, J j

β ∈ C, (46)

and let us denote bỹE the vector of(CCard(Ih))3 of general term(Ẽ) j
β = E j

β , and byJ̃
the vector of general term(J̃) j

β = J j
β . Then solving problem (40) amounts to finding the

solutionẼ (such that5̃Ẽ = Ẽ) of the following linear system

5̃Ã5̃Ẽ = 5̃D̃J̃, (47)

where5̃ is the matrix associated to the projection5, Ã the matrix whose general term
(Ã)i jαβ is obtained by replacingEh byφ j

β andFh byφi
α in the left-hand side of Eq. (40), and

D̃ the matrix whose general term(D̃)i jαβ is obtained by replacingJh by φ j
β andFh by φi

α in
the right-hand side of Eq. (40).

As we intend to inverse the linear system resulting from the variational formulation in a
large domain with fine meshes, it is worth using iterative methods rather than direct ones.
The QCGS method [18, 19] has been preferred to other classical methods, such as QMR
[20] and conjugate gradient [21], because it ensures the decreasing of the residue at each
iteration and can be used with nonhermitian matrices. Like with most iterative methods, it
is straightforward to check that applying QCGS to (47) produces at each step an iterateẼ
which is such that̃5Ẽ = Ẽ, thus addressing correctly the treatment of perfectly conducting
boundary conditions.

Test cases reported in [12] have been successfully performed in a cylindrical waveguide
filled with two dielectric media and with a solenoidal exciting current density, in order to
make a simulation as close as possible to the one we shall finally consider in Section 4. In
particular, the necessity of penalizing (25) in the variational formulation was demonstrated,
as no convergence of the QCGS method was obtained without penalization.

3.3. Solution of the Vlasov Equation

Once the EM field is computed, the next step in the proposed iterative method is to find
a 2π

ω
periodic solution of Eq. (14), subject to the boundary conditions (12) and (13).

3.3.1. A periodic solution. Let us suppose that a particle approximation of the incoming
flux on the injection boundary is known under the form

−V · ν(X) fB(X,V, t) =
( ∑

p∈[1,P]

gpδ(X − X p)⊗ δ(V − V p)

)
⊗
∑
m∈N

δ(t −m1t).

(48)
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This means that at each time step,P particles are introduced in the domain of computation
in (X p)p∈[1,P] with velocities(V p)p∈[1,P] . The time step size is chosen to be

1t = 2π

ωN
, with N ∈ N∗. (49)

The determination of such an approximation will not be detailed here and can be achieved
for example by using a so-called Quiet Start method. We refer to [22] for details on this
item.

In order to construct a periodic solution of Eq. (14) subject to the boundary conditions (12)
and (13), we consider the corresponding initial value problem (12)–(14) withfα(X,V, t =
0) = 0; ∀(X,V) ∈ Ä× R3, and we shall show that its solution is periodic for all timest
greater than some valueT∗ to be given below.

Let us introduce in a classical way the characteristic curves associated to the particle
emitted inX p with velocityV p at timem1t(

XX p,V p,m1t ,VX p,V p,m1t
)

: R→ Ä× R3

s 7→ (
XX p,V p,m1t (s),VX p,V p,m1t (s)

)
, (50)

which are the solutions of the differential system

dXX p,V p,m1t (s)

ds
= VX p,V p,m1t (s)

dVX p,V p,m1t (s)

ds
= q

m

[
E
(
XX p,V p,m1t (s), s

)
+VX p,V p,m1t (s)× B

(
XX p,V p,m1t (s), s

)]
(51)

XX p,V p,m1t (m1t) = X p

VX p,V p,m1t (m1t) = V p,

with E andB given by

E(X, t) = E1(X)eiωt + E1(X)e−iωt , (52)

B(X, t) = B0+ B1(X)eiωt + B1(X)e−iωt , (53)

consistently with Eq. (14).
Let us also define the “outgoing time” of a characteristic curve

τs(X p,V p,m1t) = inf
s

{
s ≥ m1t,

(
XX p,V p,m1t (s),VX p,V p,m1t (s)

) ∈ F+ ∪ F0
}

(54)

as the moment in which the curve intersects the boundaryF+ ∪ F0 defined by

F+ = {(X,V) ∈ 0 × R3, V · ν(X) > 0}, (55)

F0 = {(X,V) ∈ 0 × R3, V · ν(X) = 0}, (56)

where we recall that0 is the boundary of the domain, and whereν(X) is the outgoing
normal unit vector of0 in pointX.
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The solution of the initial value problem under consideration is given by

f (X,V, t) =
∑
m∈N

∑
p∈[1,P]

gp
[
Hm1t (t)− Hτs(X p,V p,m1t (t)

]
× δ(X − XX p,V p,m1t (t)

)⊗ δ(V − VX p,V p,m1t (t)
)
, (57)

where the Heavyside functionHu(s) is defined by

Hu(s) =
{

0 if s< u
1 if s ≥ u

. (58)

Let us now assume that all injected particles reach the “outgoing” boundary within a finite
time and let us define

T∗ = supτs(X p,V p,m1t) < +∞.
m ∈ [0, N[ (59)

p ∈ [1, P]

Under this hypothesis, the solution (57) of the initial value problem is2π
ω

periodic, for times
greater thanT∗,

∀q ∈ N,q ≥ T∗

1t
, f (X,V, (q + N)1t) = f (X,V,q1t). (60)

The proofs of (57) and (60) are not given here (they can be found in [12]), but one can easily
understand these properties. Equation (57) states that the delta functions are transported
along their characteristic curves.

The weight [Hm1t (t)− Hτs(X p,V p,m1t)(t)] is here to ensure that the contribution of the
particle injected in (X p,V p,m1t) is zero before it is injected (fort < m1t) and vanishes
after it has gone out of the domain (fort > τs(X p,V p,m1t)).

Equation (60) simply states that a particle injected in (X p,V p, (m+ N)1t) follows the
same characteristic curve as that injected in (X p,V p,m1t), and f is thus periodic as soon
as all the particles injected during the firstN time steps are already out of the domain.

The values ofJi,1 andni,0 at the vertices of the tetrahedra are now needed to compute the
tensorsσi andσe defined by Eqs. (21) and (23). For the sake of compatibility with the finite
element method described in Section 3.2, we use aP1 approximation of these quantities

Ji,1(X) ≈
∑

β∈{x,y,z}

∑
j∈Ih

J j
i,1,βφ

j
β(X), (61)

ni,0(X) ≈
∑
j∈Ih

n j
i,0φ

j (X), (62)

whereφ j andφ j
β are the basis functions defined in Section 3.2.3. Using the quadrature

formula (43), we have∫
Ä

Ji,1(X)φ
j
β(X) dÄ ≈ M j J j

i,1,β and
∫
Ä

ni,0(X)φ j (X) dÄ ≈ M j n j
i,0, (63)
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whereM j is defined by

M j =
∑

Kh⊂Supp(φ j )

|Kh|
4
. (64)

Using formula (57), definitions (17) and (18) and denoting byQs the integer part of
τs(X p,V p,I1t)

1t , we obtain after some algebra

M j J j
i,1 =

qi

N

∑
p∈[1,P]

gp

N−1∑
I=0

Qs∑
k=I

VX p,V p,I1t

((
k+ 1

2

)
1t

)
× e−iω(k+ 1

2 )1tφ j
(
XX p,VP,I1t ((k+ 1)1t)

)
, (65)

M j n j
i,0 =

qi

N

∑
p∈[1,P]

gp

N−1∑
I=0

Qs∑
k=I

φ j
(
XX p,V p,I1t ((k+ 1)1t)

)
. (66)

These formulae have the crucial implication that it is enough to follow the discrete trajec-
tories of theP × N particles injected during the first period of the EM field. This number
of particles does not depend onT∗ which can be quite large for long devices. Note that for
fixed (p, I , k), the value ofφ j (XX p,V p,I1t ((k+ 1)1t)) is nonzero only for four verticesj ,
namely the summits of the tetrahedron in which the particle injected in (X p,V p, I1t) is
present at time (k+ 1)1t . The determination of such a tetrahedron and the computation of
φ j (XX p,V p,I1t ((k+ 1)1t)) are performed using the particle tracking method presented in
[23]. In the context of ICR heating, the determination of the particle trajectories must be a
subject of special care and is described in the next subsection.

3.3.2. Particle pushing. The periodic Larmor motion of the ions around their guiding
centers needs to be described accurately because the heating mechanism of a speciesα is
based on the resonance betweenω andωcα. The usual particle pusher of Boris, as described
in [22], discretizes the circular uniform motion by a polygon whose perimeter is shorter than
that of the circle it approximates, resulting in a slight modification of the effective cyclotron
frequency of the particles. As this modification is roughly of the order of the isotope shift
between the different isotopic species for usual discretizations (around 1.3% for a polygon
with 16 sides), it is absolutely necessary to use a well-adapted particle pusher.

The general idea is the following: Knowing at timetn− 1
2 , the velocityVn− 1

2 and at time
tn the positionXn of an ion and the values of the EM field inXn, we shall integrate the
equation

dV
dt
= q

m
(E(Xn, t)+ V(t)× B(Xn, t)), V

(
tn− 1

2
) = Vn− 1

2 , (67)

as exactly as possible on the interval [tn− 1
2 , tn+ 1

2 ]. In this formula,E andB are given by
(52) and (53).

After computing the approximationVn+ 1
2 of the velocity at timetn+ 1

2 the position is
updated through the classical scheme

Xn+1 = Xn +1tVn+ 1
2 . (68)
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Keeping in mind that the combined effects ofE1 andB0 are the very basis of the cyclotron
heating mechanism, we choose to decouple their action of that ofB1 which is orders of
magnitude weaker thanB0. We thus take into account the following:

1. Half a rotation resulting fromB1

dV(1)

dt
= q

m

[
V(1) × (B1(Xn)eiωn1t + B1(Xn)e−iωn1t )

]
(69)

with V(1)(0) = Vn− 1
2 ,

2. Then, the effect resulting fromE1 andB0

dV(2)

dt
= q

m

[
E1(Xn)eiωt + E1(Xn)e−iωt + V(2)(t)× B0

]
(70)

with V(2)
(
tn− 1

2
) = V(1)

(
1t

2

)
,

3. The second half-rotation resulting fromB1

dV(3)

dt
= q

m

[
V(3) × (B1(Xn)eiωn1t + B1(Xn)e−iωn1t )

]
(71)

with V(3)(0) = V(2)
(
tn+ 1

2
)
,

The final approximation will be computed as

Vn+ 1
2 = V(3)

(
1t

2

)
. (72)

The steps (69) and (71) do not need a special treatment. Thus, we use the classical Boris
pusher whose precision is second order in time, according to the formula

V( j )
(
1t
2

) −V( j )(0)
1t
2

= q

m

(
V( j )

(
1t
2

) +V( j )(0)
)

2
× (B1(Xn)eiωn1t + B1(Xn)e−iωn1t ),

(73)

for j = 1 or 3.
Practical details to implement this pusher can be found in [22]. On the other hand, Eq. (70)

is solved in an exact way. It is first useful to splitV(2) = (u(2), v(2), w(2)) andE1 in their
parallel and perpendicular components relatively to the magnetic field, i.e., to the vectorez.

The equation forw(2) is now,

dw(2)

dt
= q

m
[E1z(Xn)eiωt + E1z(X

n)e−iωt ], (74)

whose solution is given by

w(2)
(
tn+ 1

2
) = w(2)(tn− 1

2
)+ 2q

ωm
sin

(
ω1t

2

)
[E1z(Xn)eiωn1t + E1z(X

n)e−iωn1t ]. (75)
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By setting,

V⊥ = u(2) + i v(2), (76)

and

En
⊥ = E1x(Xn)+ i E1y(Xn), Ẽn

⊥ = E1x(X
n)+ i E1y(X

n), (77)

we obtain the following equation forV⊥

dV⊥
dt
= −iωcV⊥ + q

m

(
En
⊥eiωt + Ẽn

⊥e−iωt
)
. (78)

As usual, when studying particle motion in the context of ICR, it is necessary to consider
two cases

1. Nonresonant cases (ω2 6= ω2
c), for which there holds

V
n+ 1

2
⊥ = V

n− 1
2

⊥ e−iωc1t

+ q

m

[
En
⊥eiω

(
n+1

2

)
1t

(
1−e−i (ωc+ω)1t

)
i (ωc+ω) + Ẽn

⊥e−iω(n+1
2)1t

(
1− e−i (ωc−ω)1t

)
i (ωc−ω)

]
. (79)

2. We then only consider the resonant caseω = ωc, as the other possibilityω = −ωc

can be treated in a similar way. The exact solution of (78) is given by

V
n+ 1

2
⊥ =V

n− 1
2

⊥ e−iωc1t + q

m

[
En
⊥eiω(n+ 1

2)1t

(
1− e−i (ωc+ω)1t

)
i (ωc + ω) + Ẽn

⊥e−iω(n+ 1
2)1t1t

]
. (80)

4. RESULTS

The aim of this section is twofold. First, we test on a rather simple case the conver-
gence of the iterative method proposed to solve the global coupled problem as described in
Section 3.1. Second, we check qualitatively that the numerical results meet expected physi-
cal characteristics. Detailed analysis of the physics as well as comparisons with experiments
are not the matter of this paper and will be reported elsewhere.

4.1. Simulation Parameters

We are interested in the simulation of a Potassium plasma composed of two isotopic
species:41K, further denoted as “species 1” and39K, further denoted as “species 2.” All
relevant physical parameters will be subscripted either by1 or by 2 whether they refer to
species 1 or 2, respectively.

The computational domain is a cylinder of length 50 cm and of radius 15 cm, which
represents the heating region of a fictitious separation device. For information, the length
of actual devices, as described for example in [3] and [24] may vary from 0.5 m to 2 m.

On the injection section of this cylinder (located inz = 0) the distribution functions of
the two ion species are given by

fα,B(x, y, u, v, w) =

(

1− R2

R2
p

)p
n0aα g̃α,B(v⊥, v‖) if R≤ Rp

0 if R≥ Rp,

(81)
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where we set

R2 = x2+ y2, v2
⊥ = u2+ v2, v‖ = w. (82)

The functiong̃α,B is supposed to be Maxwellian

g̃α,B(v⊥, v‖) = 1

π
3
2 V3

Th,α

e
− (v‖−w̄α )2

V2
Th,α

− v2
⊥

V2
Th,α , (83)

andn0 designates the total ion density at the center of the plasma column,p is a real number
determined by the experimental conditions,Rp is the radius of the plasma column at the
entrance of the heating zone,aα represents the proportion of speciesα in the plasma, ¯wα is
the mean axial velocity, andVTh,α the thermal velocity computed from the temperatureTα
by the following formula

VTh,α =
√

2K Tα
mα

. (84)

For the simulation presented here, we choose the following parameters

n0 = 5.1016 particles.m−3, p = 1.5, Rp = 6 cm, (85)

a1 = 0.069, a2 = 0.931, T1 = T2 = 0.2eV, w̄1 = w̄2 = 3000 m.s−1. (86)

The magnetic field strength|B0| is chosen to be 0.3 T. The antenna which carries the electric
current is a simple solenoidal sheet

Jext,1(R, θ, z) =

 0

Jθ
0

 δ(R− Ra)1z∈[zm;zM ], (87)

whereδ is the Dirac distribution located inR= Ra = 8.5 cm. Moreover, the antenna extends
axially from zm = 0.1 m tozM = 0.4 m and carries a currentJθ = 900 A.m−1.

Under these conditions, the value of the ion–ion collision frequency at the center
(R= 0) of the plasma column and at the entrance of the heating zone is found to be
around 6.104 s−1. Note that this value decreases both radially, because of the density profile
as given by Eq. (81), and axially, in a strong way, as heating raises the temperature species
(see Figs. 5 and 6). Thus, the simulation presented here reaches the limit of applicability of
the noncollisional assumption for those particles which are at the center of the column: with
the mean axial velocity indicated above, such particles will, in the mean, experience a few
collisions during their transit in the heating zone. However, this may hardly affect the results
presented here because the accelerating electric field is anyway zero on the axis, as can be
seen from Fig. 7. Inclusion of an ion–ion collision operator would be required to study the
effect of the noncollisional hypothesis on the numerical results, but is out of the scope of this
article.

The computational domain is covered by two meshes (a coarse one and a finer one).
They are further denoted byM1 (respectivelyM2) and are composed of 5607 (resp. 38581)
nodes and 30240 (resp. 218880) tetrahedra. The axial length of 0.5 m is discretized by
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FIG. 5. Longitudinal profile of the field|Ẽ⊥| (a) and of the mean Larmor radius of isotopes39K and41K (b)
in R= 2 cm forω = ωc1.

21 (resp. 41) nodes and there are 267 (resp. 941) nodes in a section of the mesh. Moreover,
the wave period is divided into 16 (resp. 32) time steps for simulations onM1 (resp.M2)
and 1664 (resp. 13312) particles of each of the two species are injected at each time step,
which corresponds to 8 (resp. 16) particles per triangle belonging to the trace of the mesh
on the injection section of the cylinder.

4.2. Numerical Results

In order to evaluate the convergence of the iterative method proposed in Section 3.1, we
define two criteria Dk and Dpk which measure the relative difference between the electric
fields obtained at iterationsk andk− 1 in the whole domain and in the part of the domain
filled with plasma, respectively. More precisely; we define

Dpk =

√√√√√√√
∑
j∈I P

h

M j
∥∥(E j

h

)k − (E j
h

)k−1∥∥2

∑
j∈I P

h

M j
∥∥(E j

h

)k∥∥2 , (88)

FIG. 6. Longitudinal profile of the field|Ẽ⊥| (a) and of the mean Larmor radius of isotopes39K and41K (b)
in R= 5 cm forω = ωc1.
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FIG. 7. Radial profile of the field|Ẽ⊥| in z= 0.25 m (a) and of the mean Larmor radius of isotopes39K and
41K (b) in z= 0.45 m forω = ωc1.

and

Dk =

√√√√√√√
∑
j∈Ih

M j
∥∥(E j

h

)k − (E j
h

)k−1∥∥2

∑
j∈Ih

M j
∥∥(E j

h

)k∥∥2 , (89)

where(E j
h)

k is the value of the field Eh at node j and at iterationk, and whereI P
h is the

subset ofIh composed of the nodes that are located in the plasma region (R≤ RP).
The quantities Dpk and Dk are presented on Figs. 2 and 3 forω = 0.95ωc1 andω = ωc1,

respectively, and for simulations performed on meshM1. Fast convergence is observed
with ω = 0.95ωc1, when the cyclotron heating is rather low. On the other hand, the first
iteration forω = ωc1, when the heating of species 1 is maximum, computes only a crude
approximation of the converged value of the electric field and a supplementary iteration
seems to be necessary to reach the same criteria as in theω = 0.95ωc1 case.

Further, we give in Table I the CPU time needed to compute a solution of the Maxwell
equations (“M step”) and of the two ion Vlasov equations (“V step”) on both meshes on
a CRAY T3D vector computer. Obviously, computations on the coarser mesh are rather
cheap and enable parametric studies of the separation process by varying parameters, such
as wave frequency, confining magnetic field strength, plasma density. We also note that
further efforts (e.g., parallelization) should be made to lower the CPU time needed by
particle treatment, as this is the most expensive part of the computation. When well-
defined parameters have been chosen after a parametric study on the coarser mesh, a
more detailed computation can be made within some hours of CPU time on the finer
mesh.

TABLE I

CPU Time Needed for the Two Steps of the Iterative

Method on MeshM1 and M2

Mesh Step M Step V

M1 2.75 s 105 s
M2 29.2 s 3718 s
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4.3. Analysis of the Results

Simulations were performed onM1 forω ∈ [0.95ωc1, 1.10ωc1] with increments of 0.01ωc1

inω. In order to evaluate the efficiency of the selective heating, the mean Larmor radius of the
two ion species in the section of the cylinder located inz= 0.45 m and forR= 0, R= 2 cm
andR= 5 cm was computed as a function of the frequency of the exciting current density.
Figure 4 shows that the most efficient pulsation for the heating of species 1 (resp. species
2) isω = ωc1 (resp.ω = ωc2): This indicates the absence of Doppler shift for this type of
antenna, a fact which was pointed out in [2].

The longitudinal profiles of the resonant transversal electric fieldẼ⊥, defined by for-
mula (77) and of the mean Larmor radius of species 1 and 2 are presented on Fig. 5
for R= 2 cm and 6 forR= 5 cm. Recalling that the exciting antenna is located be-
tween z= 10 cm andz= 40 cm, we observe a good transversal homogeneity of the
electric field in the region 15 cm≤ z≤ 35 cm, and the mean Larmor radius of the res-
onant species grows rather linearly in this region. On the other hand, after an initial
growth, the mean Larmor radius of the nonresonant species starts to decrease at the end
of the column. But as the field is lower in that region, this decrease is weak. In or-
der to get a better selectivity of the method, the heating region should be chosen long
enough so that the nonresonant species has lost a maximum of energy at the end of the
column.

Finally, Fig. 7 shows that the radial profile ofẼ⊥ in the sectionz= 25 cm is linear
with respect to the radial position. This fact was observed with that type of antenna in [2].
Moreover, as a consequence, the mean Larmor radius of the ions species also varies rather
linearly.

5. SUMMARY AND CONCLUSIONS

In this paper, a self-consistent nonlinear model for the ICR isotope separation process
was presented for the first time. While the interaction between the electromagnetic field
and the ion species is described by the coupling of the time harmonic Maxwell equations
and quasilinear Vlasov equations, electrons are assumed to be cold. Further, we introduced
a fixed-point iterative method to self-consistently solve this nonlinear set of equations. The
Maxwell equations are solved by a finite element method, and the ion Vlasov equations
are solved by a particle method specially adapted to the ICR phenomenon. The analysis
of a simulation in a simple configuration indicates that this iterative method shows fast
convergence and that parametric studies of an actual separation device are reachable for
reasonable memory and CPU time costs. Moreover, the presented numerical results meet
expected physical features, which justifies our confidence in this method.
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